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NONLINEAR ELECTROHYDRODYNAMIC STABILITY

OF A POISEUILLE TWO-LAYER FLOW

UDC 541.24:532.5V. E. Zakhvataev

The long-wave stability of the Poiseuille two-layer flow of homogeneous viscous dielectrics be-
tween plate electrodes under a constant potential difference is studied in an electrohydrodynamic
approximation. A linear asymptotic stability analysis shows that surface polarization forces are
a destabilizing factor, in addition to viscous stratification. The method of many scales is used
to obtain the Kuramoto–Sivashinsky equation governing the weakly nonlinear evolution of the
interface between the dielectrics. Within the framework of the approaches used, it is shown
that nonlinear interactions limit perturbation growth and the interface does not fail even for a
rather large potential difference.

As is known, surface polarization forces are a factor responsible for instability of the plane interface
between two quiescent viscous dielectric fluids in a normal homogeneous electric field [1]. A linear analysis
of the long-wave stability shows that these forces also exert a destabilizing effect in the case where the basic
state of the system is a Poiseuille two-layer flow [2]. In the present work, the long-wave electrohydrodynamic
stability of the Poiseuille two-layer flow of dielectric fluids between electrodes under a constant potential
difference is studied in a weakly nonlinear approximation. A similar problem without an electric field was
studied in a linear approximation [3] and in a weakly nonlinear approximation [4–6]. The methods used to
study the long-wave stability were proposed in [3, 4].

In a previous paper [2], we considered a possible scenario of the nonlinear evolution of perturbations
without using a linear stability analysis because there is no exact correspondence between the linear dispersion
relations of the complete original problem and the reduced weakly nonlinear model.

1. We consider the Poiseuille two-layer flow of immiscible dielectric fluids between plate horizontal
electrodes under constant potential difference Φ∗. We assume that extraneous charges are absent at the inter-
face and in the fluid volumes, the electrodes are ideal conductors, and both fluids are viscous, incompressible,
homogeneous, isotropic dielectrics having the same temperature and density. In addition, the absence of a
gravitational field is assumed without loss of generality in the formulation of the problem.

We restrict ourselves to the two-dimensional case. During motion, the fluids occupy the regions Ω1 =
{−d < y < H(x, t),−∞ < x <∞} and Ω2 = {H(x, t) < y < d,−∞ < x <∞}, where x and y are rectangular
Cartesian coordinates (the y axis is directed perpendicular to the planes of the electrodes), t is time, and d is
a positive constant (see Fig. 1). The coefficients 1 and 2 denote the quantities that correspond to the regions
Ω1 and Ω2, respectively. Let Uj and Vj be the x and y velocity-vector components, Pj the pressure, and Φj

the electric-field potential in the region Ωj (here and below, j = 1 and 2).
The flow is characterized by the following constant physical parameters: ρ is the density, µj are the

dynamic viscosities, εj are the dielectric constants of the fluids, and σ is the interfacial tension coefficient.
It is assumed that there is no external magnetic field. The physical system considered is described

Institute of Computational Simulation, Siberian Division of the Russian Academy of Sciences, Kras-
noyarsk 660036. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 6, pp. 21–26,
November–December, 2000. Original article submitted December 20, 1999.

0021-8944/00/4106-0977 $25.00 c© 2000 Kluwer Academic/Plenum Publishers 977



Fig. 1

using the electrohydrodynamic approximation of [7]. Within the framework of the above assumptions, the
governing equations and the boundary conditions have the form

ρ(Ujt + UjUjx + VjUjy) = −Pjx + µj(Ujxx + Ujyy),

ρ(Vjt + UjVjx + VjVjy) = −Pjy + µj(Vjxx + Vjyy), (1.1)

Ujx + Vjy = 0, Φjxx + Φjyy = 0;

Φ1 = 0, U1 = 0, V1 = 0 for y = −d,

Φ2 = Φ∗, U2 = 0, V2 = 0 for y = d.
(1.2)

At the interface y = H(x, t), we impose the continuity conditions for the electric induction vector
component normal to the interface, the potential, the velocity vector, and the normal and shearing stresses
and the kinematic nonpenetration condition:

[ε(Φy −HxΦx)] = 0, [Φ] = 0, [U ] = 0, [V ] = 0,

−[P ] + 2(1 +H2
x)−1[µ(Vy −Hx(Uy + Vx) +H2

xUx)]

+ (1 +H2
x)−1[(8π)−1ε((1−H2

x)(Φ2
y − Φ2

x)− 4HxΦxΦy)] = σHxx(1 +H2
x)−3/2,

(1.3)

[µ(2Hx(Vy − Ux) + (1−H2
x)(Uy + Vx))] = 0, Ht + U1Hx = V1.

Here [( · )] ≡ ( · )1− ( · )2 is the jump of the quantity at the interface; the subscripts denote partial derivatives.
2. We consider the problem of the stability of the stationary plane–parallel flow induced by a constant

pressure gradient −F (F > 0) along the x axis. The flow is described by the following solution of problem
(1.1)–(1.3):

U0j = − F

2µj
y2 − Fd(m− 1)

2µj(m+ 1)
y +

Fd2

µ1 + µ2
, V0j = 0, P0j = −Fx+ P ′j ,

Φ01 = Φ∗
ε2(y + d)
d(ε1 + ε2)

, Φ02 = Φ∗
ε1(y + γd)
d(ε1 + ε2)

, H0 = 0,

where m = µ2/µ1, γ = ε2/ε1, and P ′j = const.
For simplicity, we restrict ourselves to the case with identical thicknesses of the layers in the unper-

turbed state. Let Uj −U0j = Uuj , Vj = Uvj , Pj − P0j = ρU2pj , Φj −Φ0j = Φ∗ϕj , H = dh, x→ dx, y → dy,
and t→ dU−1t, where U = U0(0) = Fd2/(µ1 + µ2) is the unperturbed flow velocity at the plane interface.
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The functions ψj are given by the relations uj = ψjy and vj = −ψjx. The evolution of the perturbations
is described by the system

Rej(∇2ψjt + (u0j + ψy)∇2ψjx − ψx(u0yy +∇2ψjy)) = ∇4ψj , ∇2ϕj = 0, (2.1)

where

∇2 =
∂2

∂x2
+

∂2

∂y2
,

ϕ1 = 0, ψ1y = 0, ψ1x = 0 for y = −1,

ϕ2 = 0, ψ2y = 0, ψ2x = 0 for y = 1,

[u0 + ψy] = 0, [ψx] = 0, [ϕ0 + ϕ] = 0,

Re1[ψyt + u0ψyx + ψyψyx − u0yψx − ψxψyy]− [m′(ψyxx + ψyyy)] + fx = 0, (2.2)

f = 2(1 + h2
x)−1[m′((h2

x − 1)ψyx − hx(u0y + ψyy − ψxx))]

+ (1/2)(1 + h2
x)−1[γ((1− h2

x)(ϕ2
0y + 2ϕ0yϕy + ϕ2

y − ϕ2
x)− 4hxϕx(ϕ0y + ϕy))]−Wehxx(1 + h2

x)−3/2,

[m′(−4hxψyx + (1− h2
x)(u0y + ψyy − ψxx))] = 0, [γ(ϕ0y + ϕy − hxϕx)] = 0,

ht + (u01 + ψ1y)hx = −ψ1x for y = h(x, t).

Here ϕ01 = γ(y+1)/(1+γ), ϕ02 = (y+γ)/(1+γ), u0j = bjy
2+ajy+1, a1 = (1−m)/2, a2 = (1−m)/(2m), b1 =

−(m+ 1)/2, b2 = −(m+ 1)/(2m), Rej = ρUd/µj , We = σ/(µ1U), m′j = µj/µ1, and γj = εjΦ∗2/(4πdµ1U).
3. The time evolution of small long-wave perturbations of the type of normal modes

(ψ,ϕ, h) = (ψ(y), ϕ(y), h) exp(iα(x− ct)), (3.1)

where α ∈ R is the wave number (α � 1) and c ∈ C, is determined by solving a spectral problem with a
regularly perturbed parameter α that is obtained by linearization of the equations and conditions (2.1) and
(2.2) for the basic state specified above and substitution of relations (3.1) into the system obtained.

Let us impose the following constraints on the orders of magnitude of the determining parameters:

Rej = O(1), We = O(α−2), γj = O(1). (3.2)

In addition, the viscosities of the fluids are assumed to be different (m 6= 1). Then, [2]

c = c(0) + αc(1) +O(α2), (3.3)

where

c(0) = 1 +
2(m− 1)2

m2 + 14m+ 1
,

c(1) =
2iRe1 (m− 1)2

(m2 + 14m+ 1)2
H(m) +

iγ2(1− γ)2(m+ 1)
3(1 + γ)3(m2 + 14m+ 1)

− iα2 We (1 +m)
3(m2 + 14m+ 1)

,

H(m) = −h1(−1)− h′1(−1)− 7h2(1) + 3h′2(1)− 7mh1(−1)− 3mh′1(−1)−mh2(1) +mh′2(1),

h1 =−m
2 − 1

1680
y7− (m− 1)2

480
y6−m

4+18m3 − 156m2 − 98m− 21
480(m2 + 14m+ 1)

y5−m
3−17m2−17m+1

24(m2 + 14m+ 1)
y4, (3.4)

h2 = −m
2 − 1

1680m2
y7 − (m− 1)2

480m2
y6 − 21m4 + 98m3 + 156m2 − 18m− 1

480m2(m2 + 14m+ 1)
y5 − m3 − 17m2 − 17m+ 1

24m(m2 + 14m+ 1)
y4.
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From (3.3) it follows that if the dielectrics of the fluids (γ 6= 1) are different, the transverse electric field
destabilizes the flow considered, and the instability increment is proportional to the square of the wave num-
ber. It is also obvious that for rather small values of the parameter We [We < O(α−2)], which characterizes
the interfacial tension, the interface is unstable for any potential difference between the electrodes.

We note that the quantity H(m) given by (3.4) is positive. This corresponds to Yih instability [3],
which results from the difference in the velocity gradients of the main flow at the interface (m 6= 1). Yih
instability occurs for any Reynolds numbers if the effective interfacial tension is rather small. The instability
increment is proportional to the quantity α2.

As is known, under certain conditions, the perturbation growth due to Yih instability is limited at the
nonlinear stage of development of the instability [4]. It is expected that a similar phonomena occurs in our
case, too. We study the problem of the stability of the flow considered in a weakly nonlinear approximation.

4. Following the approach used in [4, 6], where a similar problem was studied in the case of no
electric field, we assume that in a rather small neighborhood of the critical values of the determining pa-
rameters, the characteristic scales of perturbation growth correspond to the linear stage of development of
instability. According to the above results of asymptotic linear analysis in the range of values of the deter-
mining parameters (3.2), the evolution of small long-wave perturbations (3.1) is determined by the parameter
exp (iα(x− c(0)t)− iα2c(1)t), where α� 1. According to this, we set

ξ = ε(x− c(0)t), τ = ε2t, h = εA(ξ, τ),

ψj(x, y, t) = εψ
(0)
j (ξ, y, τ) + ε2ψ

(1)
j (ξ, y, τ) + . . . , (4.1)

ϕj(x, y, t) = εϕ
(0)
j (ξ, y, τ) + ε2ϕ

(1)
j (ξ, y, τ) + . . . ;

Rej = O(1), We = O(ε−2), γj = O(1), (4.2)

where ε > 0 is a small parameter.
Substitution of (4.1) into (2.1) and (2.2) gives a sequence of problems in different approximations for

the small parameter ε. The solution of the problem in the approximation O(ε) is given by

ϕ
(0)
1 (ξ, y, τ) = A(ξ, τ)

γ(γ − 1)(y + 1)
(1 + γ)2

, ϕ
(0)
2 (ξ, y, τ) = A(ξ, τ)

(γ − 1)(y − 1)
(1 + γ)2

,

ψ
(0)
j (ξ, y, τ) = A(ξ, τ)(c(0) − 1)(1 +Bjy + Cjy

2 +Djy
3),

where B1 = (7 +m)/4, B2 = (−1− 7m)/(4m), C1 = (1 +m)/2, C2 = (1 +m)/(2m), D1 = (−1 +m)/4, and
D2 = (−1 +m)/(4m).

In the approximation O(ε2), the quantities Aξ, A2, and Aξξξ appear in the equations and boundary
conditions. Therefore, in this approximation, we seek a solution of the problem in the form ψ

(1)
j (ξ, y, τ) =

Aξϕ1j(y) + Aξξξϕ2j(y) + A2ϕ3j(y). After certain algebraic calculations, from the kinematic condition [the
last relation in (2.2)], we obtain the equation for the function A(ξ, τ), which is a necessary condition for the
solvability of the problem and determines the evolution of the interface:

Aτ + 2QAAξ + EAξξ + SAξξξξ = 0. (4.3)

Here

E = ϕ11(0) = E1 + E2, E1 =
2Re1(m− 1)2

(m2 + 14m+ 1)2
H(m) > 0,

E2 =
γ2(1− γ)2(m+ 1)

3(1 + γ)3(m2 + 14m+ 1)
> 0, S = ϕ21(0) =

ε2 We (1 +m)
3(m2 + 14m+ 1)

> 0,

Q =
1
2

(u01y(0) + u01yy) + ϕ31(0) =
(m− 1)(m2 + 6m+ 7)

4(m2 + 14m+ 1)
.

The quantity H(m) is given by (3.4).
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The equation obtained differs from that derived in [4] only in the presence of the term E2Aξξ, which
is due to electrohydrodynamic effects.

Linearizing Eq. (4.3) for the basic state A = 0, we have the dispersion relation [for the harmonic with
the factor exp (λt+ iαx)] λ = Eα2 − Sα4, which, as should be expected, corresponds to (3.3).

5. An equation of the form (4.3), known as the Kuramoto–Sivashinsky equation, is the simplest
universal model for nonlinear processes in dissipative systems with long-wave instability and is encountered
in various problems, for example, in descriptions of liquid film flows and in plasma physics. This equation
has been extensively studied both numerically and analytically.

The periodic wave modes observed in numerical calculations [A(t, 0) = A(t, L)], described by Eq. (4.3),
are limited (see [8–10]). The stabilization mechanism involves successive energy transfer from long-wave to
short-wave modes during nonlinear interaction and energy dissipation due to the work of interfacial tension
forces. With increase in the bifurcation parameter µ = (L/(2π))(E/S)1/2, different types of ordered limiting
regimes alternate with regions of irregular behavior. For rather large values of µ, oscillations modes of a
random character are established [8–10], but the solutions are still limited.

Thus, within the framework of the approximations considered, nonlinear interactions limit perturbation
growth and the interface does not fail even for rather large potential differences.
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